Remote sensing satellites will increase the scale and speed of tracking and eliminating methane emissions

Methane emissions occur at gas wells, pipelines, refineries, and power plants, but also landfills and cattle fields. While they dissipate faster than carbon dioxide, they have a greater proportional impact on global warming.

Efforts to mitigate (reduce) CH4 and CO2 emissions are complicated by inconsistencies between estimates derived from atmospheric measurements, greenhouse gas inventories, and self-reporting programs. Contributing to these discrepancies are a relatively small number of industrial facilities that emit anomalously high amounts of greenhouse gases, often in an unpredictable and intermittent fashion. Multiple research studies by many teams have provided compelling evidence of “heavy-tail” distributions in CH4 emissions in most economic sectors. In other words, a small fraction of equipment within a region can contribute disproportionately to the region’s total emissions.

@Carbon Mapper, is launching two new satellites that will track these emissions from orbit. Governments around the world have been working to put in place standards to reduce methane leaks and meet climate goals, but it is difficult to move what you can’t measure. That’s where Carbon Mapper comes in—it will crunch satellite data to produce usable insight for regulators, industries, and the public at large.

The Carbon Mapper project demonstrates new models for government to work with private companies and achieve their goals in space. The effort is a unique public-private partnership between several non-profits, the state of California, the US national Jet Propulsion Laboratory, and two universities.